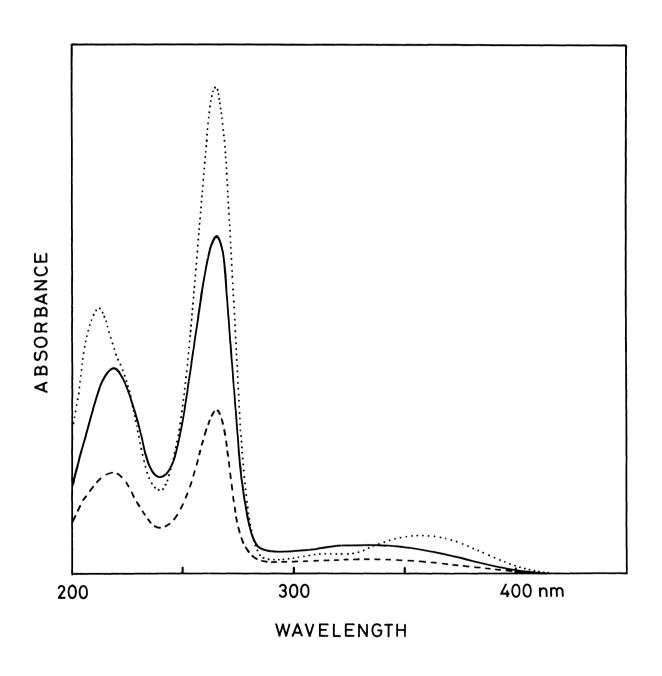
STRUCTURE AND CHEMICAL SYNTHESIS OF ME-IQ, A POTENT MUTAGEN ISOLATED FROM BROILED FISH

Hiroshi KASAI, Ziro YAMAIZUMI, Keiji WAKABAYASHI*, Minako NAGAO*, Takashi SUGIMURA*, Shigeyuki YOKOYAMA**, Tatsuo MIYAZAWA**, and Susumu NISHIMURA

Biology Division and *Biochemistry Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104, and **Department of Biophysics and Biochemistry, Faculty of Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113

Structure of a mutagenic compound (Me-IQ) isolated from broiled fish was determined to be 2-amino-3,4-dimethylimidazo[4,5-f]quinoline based on the mass-, UV- and $^1\mathrm{H-NMR}$ -spectra and chemical synthesis. Me-IQ showed strong mutagenic activity towards Salmonella typhimurium TA98 in the presence of S-9 mix.


We have isolated two potent mutagens, IQ and Me-IQ, from a methanol extract of sardines broiled under normal domestic cooking conditions, and proposed that the structures of these compounds are 1 and 2, respectively 1). We have also confirmed the proposed structure of IQ (1)by chemical synthesis²⁾. IQ showed strong mutagenic activity towards Salmonella typhimurium TA98 (433,000 revertants/µg) with activation by microsomal enzymes, S-9. The mutagen IQ was also isolated from heated beef extract 3 , and hamburger 4 , suggesting that these mutagens are commonly present in ordinary cooked foods.

In the previous report 1), the structure of Me-IQ was proposed as 2, mainly based on its 270 MHz 1 H-NMR- and mass-spectra, determined with small amounts of material (ca. 200 μg). In this communication we report that the structure of Me-IQ is 3, deduced by direct comparison of its spectral data with those of synthetic $\frac{2}{2}$ and $\frac{3}{3}$.

Compound $\frac{2}{2}$ was synthesized via 5,6-diamino-8-methylquinoline $\frac{8}{2}$ as shown in the following scheme. This method is practically the same as that reported for the synthesis of IQ^2 . 6-Amino-8-methylquinoline $\frac{4}{2}$ was converted to the tosyl derivative $\frac{5}{2}$ and nitrated with 61 % HNO $_3$ to

afford compound 6, which was hydrolyzed with H_2SO_4 to 6-amino-5-nitro-8-methylquinoline (7). Compound 7 was reduced to the diamine, compound 8, with Fe-HCl mixture. Compound 8 was then treated with cyanogen bromide to afford the cyclized derivative (9). The tetramethylammonium salt of compound 9 was heated under reduced pressure to give the N-3-methyl derivative (2) as a major product [MS: M⁺, m/e 212, M⁺-CH₃, m/e 197; UV (λ_{max}^{MeOH} , ϵ): 213 (24,900), 265 (45,600), 354 (3,600) nm; NMR (δ_{CDCl_3} , J): 8.91 ppm (H-7, d, 4.0 Hz, 1H), 7.48 (H-8, dd, 4.0, 8.2, 1H), 8.67 (H-9, d, 8.2, 1H), 7.44 (H-4, s, 1H), 6.07 (-NH₂, s, broad, 2H), 3.67 (N-CH₃, s, 3H), 2.87 (C-CH₃, s, 3H)].

For synthesis of compound 3, an intermediate compound, 6-amino-5-nitro-7-methylquinoline (13) was prepared as follows. 6-Amino-7-methylquinoline (10)⁶⁾ was converted to the 6-acetamido derivative (11), since its conversion to the tosyl derivative was unsuccessful. Nitration of compound 11 with KNO₃-H₂SO₄ mixture gave a N-nitro derivative 12. Acid hydrolysis of compound 12 gave the 5-nitro derivative 13. In this reaction, the nitro group on nitrogen migrated to the neighboring C-5 position of the quinoline nucleus. Compound 13 was reduced to 5,6-diamine (14)

with Fe-HC1 mixture. Compound 14 was treated with cyanogen bromide to afford the cyclized derivative 15, which was methylated with CH₃I in K₂CO₃-DMSO mixture to give a N-3-methyl derivative (3) and N-1-methyl derivative (16). Compound 3 was separated from compound 16 by high pressure liquid chromatography. Structural assignments for these products were based on observation of NOE between the N-methyl group and C-methyl group (3 %) in compound 3 and NOE between the N-methyl group and H-9 (15 %) in compound 16. Compound 3, MS: M⁺, m/e 212, M⁺-CH₃, m/e 197, UV ($\lambda_{\text{max}}^{\text{MeOH}}$, ϵ): 219 (23,200), 265 (38,200), 332 (3,200); NMR (δ_{CDCl_3} , J): 8.82 ppm (H-7, d, 4 Hz, 1H), 7.41 (H-8, dd, 4, 8, 1H), 8.65 (H-9, d, 8, 1H), 7.60 (H-5, s, 1H), 6.05 (-NH₂, s, broad, 2H), 3.89 (N-CH₃, s, 3H), 2.84 (C-CH₃, s, 3H).

The mass-, UV- (Fig. 1) and ¹H-NMR-spectra of Me-IQ isolated from broiled fish were completely identical with those of synthetic compound 3 but not with those of compound 2. Thus the structure of Me-IQ was established as 3. In the previous report¹⁾ structure 2 was proposed for Me-IQ, because 1) no long-range coupling between the 7.53 ppm signal (now assigned to H-5) and 8.63 ppm signal (H-9) was observed; and 2) structure 2 was sterically more probable than structure 3. Synthetic compound 3 showed potent mutagenic activity towards TA98 (663,000 revertants/µg) in the presence of S-9 mix. It should be mentioned that compound 2 also showed strong mutagenic activity on TA98 (142,000 revertants/µg). It is possible that compound 2 is present as well as compounds 1 and 3 in cooked foods. Studies are in progress on the detection and quantitative measurement of these compounds in cooked foods using the GC/MS technique.

References

- 1) H. Kasai, Z. Yamaizumi, K. Wakabayashi, M. Nagao, T. Sugimura, S. Yokoyama, T. Miyazawa, N.E. Spingarn, J.H. Weisburger, and S. Nishimura, Proc. Japan Acad., <u>56B</u>, 278-283 (1980).
- 2) H. Kasai, S. Nishimura, K. Wakabayashi, M. Nagao, and T. Sugimura, Proc. Japan Acad., <u>56B</u>, 382-384 (1980).
- 3) N.E. Spingarn, H. Kasai, L.L. Vuolo, S. Nishimura, Z. Yamaizumi, T. Sugimura, T. Matsushima, and J.H. Weisburger, Cancer Lett., 9, 177-183 (1980).
- 4) K. Wakabayashi, M. Nagao, T. Sugimura, Z. Yamaizumi, T. Shiomi, and S. Nishimura, unpublished results.
- 5) W.C. Hutchison and W.O. Kermack, J. Chem. Soc., 678-681 (1947).
- 6) R. Huisgen, Ann., <u>559</u>, 101-152 (1948).

(Received August 30, 1980)